
LTouchIt: LEGO Modeling on Multi-Touch Surfaces

Daniel Mendes
IST/Technical University of Lisbon

danielmendes@ist.utl.pt

October 2011

Abstract

Presently, multi-touch interactive surfaces have
widespread adoption. Taking advantage of such
devices, we present an interactive LEGO application,
developed accordingly to an adaptation of building
block metaphors and direct multi-touch manipula-
tion. Although touch-based interaction has evolved
in the past years, manipulation of 3D objects can not
be used without know-how of CAD and 3D modeling
software. In this work, we explore how 3D object ma-
nipulation can be simplified and made available for
most users. Our solution (LTouchIt) allows users to
create 3D models on a tabletop surface. To prove the
validity of our approach, we compared LTouchIt with
two LEGO applications, conducting a user study with
20 participants. The results suggest that our touch-
based application can compete with existing mouse-
based applications.

1 Introduction

Multi-touch surfaces introduced new interaction
paradigms, different from those provided by tra-
ditional interfaces which rely on Windows, Icons,
Menus and Pointing devices, denoted as WIMP in-
terfaces [15]. Although touch-based interaction has
evolved in the past years, manipulation of 3D objects
can not be used without know-how of CAD and 3D
modeling software, making them unsuitable for en-
tertainment. In this work, we explore how 3D object
manipulation can be simplified and made available for
most users. Therefore, we chose the LEGO scenario,
which is familiar to users of all ages. Nevertheless, we
expect our findings to be of value to general applica-
tions that require direct manipulation of 3D content.

For most people, LEGO stands for more than
a toy manufacturer. Many recognize it as the
playful plastic blocks (bricks) that echo onto our
childhood imagination. We envision that multi-
touch interaction can surpass existing mouse-based
LEGO applications for educational and entertaining
purposes, namely for exhibition, public display
and museums. We present an interactive LEGO
application, that supports bimanual multi-touch
input to create 3D models on the tabletop surface
without expertise on 3D or CAD software.

Throughout the following sections we present an
overview of existing virtual LEGO applications and
research on 3D object manipulation for multi-touch
surfaces. We follow with a detailed description of
our solution, one that we believe can address 3D ma-
nipulation and still remain fun for building virtual
LEGO models. Then, an evaluation methodology is
described where our prototype is compared against
two existing applications, which is followed by an
analysis and discussion of user evaluation sessions.
Lastly, we draw conclusions from our research and
pinpoint possible ways to improve upon this work.

2 Related Work

As multi-touch surfaces become more available for ex-
hibition and learning contexts, we propose an interac-
tive LEGO application that takes 3D manipulation in
consideration and remain coherent with actions avail-
able in other virtual LEGO solutions. Therefore, we
review existing LEGO applications from a critical per-
spective, drawing conclusions for our proposal.

To build LEGO models on a multi-touch tabletop,
the manipulation of virtual 3D objects challenge must
be addressed. This challenge has been subject of re-
search in Human Computer Interaction. In this sec-
tion, we also present an overview of the field, focus-
ing on metaphors that provide bimanual manipula-
tion supported by multi-touch surfaces.

2.1 LEGO Applications

Following the technological advances we have been
witnessing, some toys have been ported to the digi-
tal world. LEGO construction bricks are no excep-
tion and, currently, several applications allow to cre-
ate virtual LEGO models. However, the majority of
these applications are mouse-based, something we be-
lieve that diminishes the fun-factor in such contexts.
We present a survey on digital LEGO applications,
focused on both popular applications and innovative
examples.

LEGO Digital Designer (LDD)1, is a propri-
etary application of the LEGO Company. Models are
created in a 3D environment represented through a
visible auxiliary grid, resembling a traditional LEGO

1ldd.lego.com, last accessed on October 13, 2011.

1

Figure 1: LEGO Digital Designer.

baseplate, as depicted in Figure 1. LEGO bricks are
displayed, through their previews, in a browsable list.
Interaction with on-screen widgets allow the user to
orbit the camera around a point, without tilting (no
roll); zoom also relies on widgets, while panning re-
quires a mouse movement combined with keyboard
shortcut. Manipulation of bricks relies on an efficient
system of connecting parts, based on the grid concept.
Therefore, the translation of a brick is performed ex-
clusively in the grid plane, to which it adapts. If the
user translates a brick onto an existing one, the new
brick is placed above. Rotation is restricted along
two axes, which are perspective-dependent; thus, it
requires reasoning regarding which camera position
is best for the desired rotation effect.

Mike’s LEGO CAD (MLCad)2 is a Computer
Aided-Design (CAD) system for building virtual
LEGO models. It utilizes four viewports, each pro-
viding a different view of the 3D model, as depicted
in Figure 2. Both perspective (non-editable, only
for visualisation) and orthogonal views (for editing
purposes) are supported. As expected, being CAD-
based, it does not suit all users, in particular those
that are not acquainted with the paradigms of typical
CAD software. Thus, as our tests will show, it hard-
ens learning curve for building virtual LEGO models.
It integrates the LDraw3 open-source parts library,
which is widely used by the community of LEGO afi-
cionados. Bricks are displayed in two browsable pan-
els, a list of brick names (textual) and another with
their previews (graphical). Unlike most LEGO ap-
plications, the environment of MLCad does not pro-
vide an auxiliary grid, and there is no restriction for
the position of the bricks. Regarding manipulation
of bricks, translation occurs in a plane parallel to the
selected orthogonal view; while rotation can be exe-
cuted in any of the three axes (roll, pitch and yaw).

LeoCAD4, much like the previous system, also uti-
lizes the CAD paradigm and LDraw library, but al-

2mlcad.lm-software.com, last accessed on October 13,
2011.

3www.ldraw.org, last accessed on October 13, 2011.
4www.leocad.org, last accessed on October 13, 2011.

Figure 2: Mike’s LEGO CAD.

lows manipulation in both perspective and orthogonal
views. Unlike the remainder applications, searching
for bricks is accomplished through a text-based list,
since the graphical preview only becomes available
once a brick has been selected. From an interaction
perspective, LeoCAD requires mode switching via in-
terface buttons, e.g., the user has to swap explicitly
from rotation to translation. By default, brick trans-
lation is performed in a horizontal plane; hence, if
the user intends to move the object vertically, it is
required to drag the corresponding axis (each object
displays a 3D axis widget) instead of simply dragging
the object. In order to rotate bricks, it follows the
approach of Shoemake [14], displaying rotation han-
dles. Once grabbed (via mouse) each of these three
handles, restrict the rotation effect to a single plane.
Furthermore, the camera can be rotated around its
own axis, tilted (roll) or orbited around a point.

Moving away from WIMP metaphor, LS-
ketchIt [13] is a calligraphic tool, that allows LEGO
models to be built through sketching. The system is
built upon LeoCAD, and shares many of its features,
although the retrieval and selection of bricks is
achieved by drawing a sketched-up version of the
desired brick. Given the brick outline (sketch), the
system presents a list of suggestions and allows the
user to make modifications to the brick, refreshing
the suggestions accordingly to that modification.
The authors suggest that brick retrieval time can be
reduced through sketching when compared to LEGO
CAD applications.

Recently, boosted by the spread of handheld
multi-touch devices (such as the iPad/iPhone), the
Blocks!!5 application was commercially released. In
this application, camera manipulation is performed
with one touch for pan and two for rotation and zoom
(pinch zoom). New bricks can be added by select-
ing them from a list and, then, touching where the
brick should be placed. Dragging an object moves
it on the grid plane. When objects collide, the se-
lected brick is stacked on top of the other. Further-

5itunes.apple.com/us/app/blocks/id390088835, last ac-
cessed on October 13, 2011.

2

more, bricks can be rotated using two fingers: the
first fixes the object; and the second supplies the ro-
tation direction. Multiple taps on a brick cause it
to rotate, by 90 degrees intervals for each tap, and,
when a full rotation is achieved, the brick is removed
from the scene. Since this application is targeted at
small multi-touch surfaces, it does not account for
whole-hand and bi-manual interaction. A compar-
ison against the remainder applications shows that
Blocks!! is only aimed at simple LEGO models, since
the brick selection and overall features are quite lim-
ited.

A critical perspective of the aforementioned appli-
cations allows us to conclude that, currently, there is
no virtual LEGO application suited for large multi-
touch tabletops, one that we believe will be more ad-
equate for exhibition and educational purposes, while
providing natural and pleasing interaction.

2.2 Tabletop 3D Object Manipulation

Research on object manipulation for tabletops started
by studying several techniques for rotation and trans-
lation of 2D objects, using multi-touch gestures [5].
One of these techniques, the two-point rotation and
translation, became the de facto standard, and is now
popular among several multi-touch applications, even
commercial ones. This technique uses two points of
contact: the first translates the object; and the second
rotates the object around the first touch. When com-
bined with the variation of finger distance, it can be
used to scale the object; also known as rotate-scale-
translate (RST) or “pinch” when only concerning the
scale or zoom effect [17].

As far as three-dimensional manipulation is con-
cerned, various approaches have been proposed. Han-
cock et al. [3] suggested a set of guidelines to develop
multi-touch interfaces, establishing a visual and phys-
ical link with the object and 3D visual feedback. Fur-
thermore, these authors present a study regarding the
manipulation of 3D objects using one, two and three
touches simultaneously. Their results show that with
one touch it is possible to extend the Rotate ’N Trans-
late (RNT) algorithm [7] to the third dimension. This
suggests that geometric transformations (rotate, scale
or translate) should be relative to the touched point
and not to the center of the object. Also, in the sin-
gle touch approach, the rotation can be performed
around any of the three axes, while translation occurs
in a plane parallel to the visualization plane. The two-
touch approach uses the first contact point to apply
the RNT algorithm exclusively in the two dimensions
of the viewing plane, while the second touch allows
rotation around the two remaining axes and trans-
lation in the third dimension (the one orthogonal to
the viewing plane). Lastly, the three-touch approach
(which the authors denote as Sticky Fingers [4] - illus-
trated in Figure 3), showed optimistic results, faring
better than the other two. In this approach, by apply-
ing the two-point rotation and translation technique
for two-dimensional objects, it is possible to translate

Figure 3: Sticky Fingers and the Opposable Thumb.
From [4].

the object in two dimensions and rotate around one
axis. The scale is replaced by the translation in depth
relatively to the camera. For rotation, two touches on
the object define a rotation axis, while a third touch,
denominated Opposable Thumb, allows the rotation
around that axis, providing six DOFs (degrees of free-
dom).

For handling 6 DOFs simultaneously, Reisman et
al. [12] introduced a method to extend the RST into
3D. Using only direct touches on the object, a con-
straint solver calculates the new position and orienta-
tion of the object, maintaining the correspondence be-
tween the positions of the fingers in the 2D screen and
the screen-space target positions, i.e., the 3D points
where the user touched the object.

Wilson [16] followed a different approach, in which
there is no need to define a specific interaction
through gesture recognition. His solution consists in
virtual proxies of the user’s contact zone with the sur-
face. The interaction between the proxies and the
virtual objects follows a physical model, which allows
the manipulation of objects in the scene, e.g., trans-
lating can be achieved by pushing the object from
one side. However, this approach does not address
depth manipulation, since the objects are placed in a
horizontal plane.

Martinet et al. [8] proposes two techniques to trans-
late 3D objects. The first extends the viewport con-
cept found in many CAD applications (four view-
ports, each displaying an different view of the model).
Touching and dragging the object within one of the
viewports translates the object in a plane parallel to
that view. Manipulating the object, with a second
touch, in a different viewport modifies depth rela-
tively to the first touch. For the second method,

3

Figure 4: Illustration of the Z-Technique. From [8].

denoted as Z-technique (Figure 4), only one view of
the scene is employed. In this technique, the first
touch moves the object in the plane parallel to the
view, while the backward-forward motion of a second
touch controls the depth relatively to the camera po-
sition. The authors preliminary evaluation suggests
that users prefer the Z-technique.

Improving upon the Z-Technique, Martinet et al. [9]
added the constraint solver described in [12] to per-
form rotations, separating the control of translations
from rotations. With one direct touch on the object
the user can move it on the camera plane, and through
a simultaneous indirect touch its depth can be ma-
nipulated. Also, with two or more direct touches the
object can be rotated. A comparison of this approach
to Sticky Fingers and Screen-Space [12] showed that
separation of translation and rotation can lead to bet-
ter performance.

Cohe et al. [1] propose a widget for indirect manipu-
lation of the object in 9 DOFs (three for translations,
three for rotations and three for scales) separately. It
consists of a wireframe box which the user can in-
teract with, instead of the actual object itself. The
object is translated by dragging the edge of the box
corresponding to the desired axis. Dragging two op-
posite edges scales the object. Rotation is defined
by the direction of user motion, once the user starts
dragging a face of the box.

The aforementioned work covers interaction with
3D objects on multi-touch surfaces, but most are tar-
geted at scenarios where the camera does not move,
or at least does not rotate. Moreover, scenes with
different cameras, such as an isometric perspective,
will require additional cognitive effort from the user
in order to understand the plane in which the objects
are moving. It might be also difficult for a user to
comprehend which gestures are needed to translate
an object to a desired position, e.g., to move the ob-
ject in a horizontal plane. Besides, as stated in [9],
its difficult to interact with small objects with multi-
finger approaches, since there is no sufficient space for
multiple direct touches on the same object.

Our work addresses these issues, since they are
common challenges in 3D building block applications,

such as the LEGO scenario. We propose an applica-
tion, with free camera manipulation, that provides
easy navigation and understandable 3D object inter-
action (6 DOFs).

3 LTouchIt

We developed an application (LTouchIt) to build vir-
tual LEGO models on multi-touch sensitive surfaces,
based on the analysis of existing virtual LEGO ap-
plications and the state of the art regarding object
manipulation on tabletops, as previously described.

To start the development cycle, we conducted an
evaluation with 21 users in order to identify the ad-
vantages and drawbacks on three of the most com-
monly used LEGO applications: LDD (LEGO Digital
Designer), MLCad and LeoCAD (which are covered
in our related work). The results of this evaluation,
as described in [10], served as guidelines throughout
the development of our solution, one that we hope can
surpass the problems identified in existing solutions,
and also suit entertainment and educational purposes.

3.1 Architecture Overview

Our application was developed accordingly to the ar-
chitecture illustrated in Figure 5. While the blue
modules consist of existing solutions we adopted, the
green modules were developed for our application.
The first and most relevant is the Interaction Con-
troller. This module analyses the movements of the
fingers on the surface, which are tracked using CCV

Figure 5: LTouchIt architecture.

4

Figure 6: The LTouchIt interface.

tbeta6, in order to identify the gestures made and the
corresponding actions. These actions are then trans-
mitted to the other developed module, the LEGO
Modeller. This is the core of the application and it is
where all of its logic is implemented. It also contains
information about the LEGO bricks, the model being
built and the camera.

All the data related to the scene, including the
representation of the bricks, their position, orienta-
tion and details of the visualization, is stored using
OpenSG7. This open source graph system undertakes
the conversion to OpenGL primitives and the render-
ing process. The information regarding the geome-
try of the bricks is gathered from the LDraw parts
library. Using the LDraw standard, LTouchIt can
open construction files saved from other LDraw com-
patible applications and vice-versa.

3.2 Interface

The interface of LTouchIt is depicted in Figure 6.
The construction takes place in the center area on a
visible grid. The grid adapts if necessary, expanding
and contracting as bricks are spread throughout the
construction area. It resembles a traditional LEGO
baseplate, helping users to fit the bricks, which move
in intervals (snapped) of one unit.

The right-side vertical panel holds the available
bricks. The user can search through the list by mov-
ing it up or down. Within the panel, bricks are or-
ganized into groups, making it easier to be retrieved.
Also, a scroll bar indicator allows quick access of brick

6ccv.nuigroup.com, last accessed on October 13, 2011.
7www.opensg.org, last accessed on October 13, 2011.

sub-groups by touching on the visual identification
(an icon that depicts what type of bricks can be found
in the group).

To use a brick, the user can pick it from the list and
drag it to the desired position. Conversely, to remove
a brick from the construction site, the user can drag
it back to the panel. Also, holding the finger on a
brick in the panel will display more information, such
as the brick name and dimensions.

On the bottom there are two toolbars, which can be
expanded and closed. The left toolbar holds all the
usual functionalities, such as: create a new model,
save the current model and quit the application. Fur-
thermore, it also allows to temporarily hide bricks or
to show previously hidden bricks. The right toolbar
is a color palette, that can be used to change the color
of a brick or the whole brick list.

A final analysis of our interface shows that table-
top design guidelines have been taken into considera-
tion, accounting for: maximizing the interactive area
(77% of the area is dedicated for building the mod-
els); dominant hand is taken into consideration (as
it provides more ergonomic comfort throughout the
interaction); and graphical widgets have an appropri-
ate size (enough to be touched and remain partially
visible, thus minimizing occlusion).

3.3 Interactions

To manipulate bricks, we aimed at a natural and fa-
miliar scenario for LEGO users, moving further from
the traditional selection concept - which is to drag ob-
jects with a single touch. Instead, we used a “pick”
metaphor to grab an object and then, without releas-

5

Figure 7: (a) “Pick” gesture; (b) Arrows identifying
a vertical translation plane; (c) Changing to a hori-
zontal translation plane.

ing, move it, as depicted in Figure 7. This gesture
is resemblant of picking up a real LEGO brick and
placing it on the desired location. As our test sub-
jects denoted in their commentaries, this gesture was
found to be very familiar and understandable.

In order to assess the best approach for 3D ob-
ject manipulation on multi-touch tabletops, with un-
constrained viewpoints, we carried out a user evalu-
ation with 20 users comparing several approaches for
translation and rotation. In the following sections we
briefly describe the comparison of these techniques
and draw conclusions upon the selected approach.
Complementing the object manipulation, we present
our camera manipulation and cloning metaphor.

3.3.1 Object Translation

We developed three translation techniques: Orthog-
onal uses a translation plane in which the normal
direction is closer to the view vector and orthogonal
to one of the scene axes; Horizontal-Z moves the ob-
ject accordingly to a horizontal plane and, by scrolling
a second touch, changes the object depth relatively
to the camera (similarly to the Z-Technique); and
Plane-Switch uses a horizontal translation plane
which, by tapping a second finger, changes to a ver-
tical plane. For all techniques, dragging the object
will move it in the current translation plane; thus,
the user manipulates no more than two DOFs with
one finger, which maintains a strict relation between
the two-dimensional input and the two-dimensional
translation.

We compared these approaches amongst each other
and with the Z-Technique. Test results showed that
users experienced difficulties when translating objects
in a plane parallel to the view, suggesting that an or-
thogonal (to one of the scene axes) translation plane
is desirable. Also, we found that manipulating object
depth with the scrolling touch was sometimes misun-
derstood as a scaling gesture. Result analysis denoted
Orthogonal and Plane-Switch as the more efficient

Figure 8: (a) Showing rotation handles; (b) Rotating
a brick.

approaches, although without statistically significant
differences between them, which suggests that a com-
bination of the two might result in the desired ap-
proach (since they are combinable).

Our solution, combines the aforementioned ap-
proaches into one (Grab’N Translate), as depicted
in Figure 7. After picking up the object (Figure 7.a),
the user translates it in the plane defined by the cam-
era (Figure 7.b), allowing to take the most of the cur-
rent view. If the user intends to change the trans-
lation plane, no camera movements are required; in-
stead, a tap with a second finger alternates between
a horizontal and a vertical plane (Figure 7.c). Visual
feedback is provided by four arrows and the shadow of
the object. The arrows depict the possible directions
in which the object can move, which describes the
current translation plane. When the object intersects
the construction grid the arrows become red.

3.3.2 Object Rotation

Concerning the rotation of objects, we developed
three techniques: Camera-Defined-Axis uses the
RST applied to the current translation plane, i.e.,
while moving the object, a second touch rotates the
object around the first; User-Defined-Axis is simi-
lar to the Opposable Thumb, but the rotation axis is
one of the scene axes; Rotation-Handles uses vir-
tual handles (similar to object handles in [2]), the first
touch selects the rotation axis and the second touch
rotates the object. These techniques only allow to
control rotation over one DOF at a time, something
we found desirable in our evaluation of LEGO appli-
cations.

User evaluation showed that Rotation-Handles
outperforms the remainder approaches. Users seem
to be more pro-efficient with virtual handles since
it provides more comprehensible feedback of the ro-
tation axis, while reducing time to change rotation
axis - because users do not need to change views, as
observed in Camera-Defined-Axis, or define the
axis manually, as required by User-Defined-Axis.
Rotation-Handles is the technique used in our so-
lution, complemented with a snap mechanism that
automatically fits the brick to the nearest 90 degrees
angle when the rotation handle is released. In order
to make the the handles visible, the user taps some-

6

Figure 9: Gesture for cloning a brick.

where on the surface while holding the object with
the other finger, as illustrated in Figure 8.

3.3.3 Camera Manipulation

To manipulate the camera, our solution accounts for
orbit, zoom and pan operations. One touch rotates
the camera around the model; two touches zoom in
and out; and four or more touches in close proximity
move the camera. It is possible to quickly re-center
the camera by tapping the desired position while pan-
ning. Furthermore, throughout observation we found
that some users prefer to rotate the camera with two
touches, which was also included.

To provide a fluid interaction, we allow concurrent
bimanual combination of camera rotation and object
translation. Thus, the user can change viewing angle
with one hand, while moving the picked object with
the other. Moreover, the translation plane will change
accordingly to the new perspective.

3.3.4 Brick Cloning

To duplicate (or clone) a brick, preserving its color
and orientation, we developed a cloning metaphor:
“touch and pick”, which is illustrated in Figure 9.
The gesture consists of pointing to the object that we
want to duplicate with one finger of the non-dominant
hand and, then, picking the same object with a pick
gesture using the dominant hand.

Once the “pick” gesture is completed, the new brick
is created and placed underneath the dominant hand,
allowing the user to move it to the desired position.
Since we found that it can be difficult to touch and
pick small sized objects, we allow to pick outside the
brick, as depicted in Figure 9. Furthermore, this en-
ables users to create the cloned object directly on the
desired position.

4 User Evaluation

To evaluate our prototype application (LtouchIt),
we compared it with two existing LEGO applications
based on the WIMP paradigm. We chose LEGO Dig-
ital Designer (LDD) and MLCad, since our prelim-
inary evaluation [10] suggested they were the most
pleasing for users. Furthermore, LDD is a proprietary
LEGO tool, while MLCad is a community-driven ef-
fort.

Figure 10: User interacting with LTouchIt.

4.1 Participants

Evaluation was carried out by 20 users (15 male and
five female; all right handed), ranging from 11 to 26
years old (mean=23.5 years old). Concerning pre-
vious experience with CAD or 3D modelling appli-
cations, 10% of the users have some experience and
20% are very experienced with such software. Only
15% have never used a multi-touch device, while the
remainder have experience with multi-touch smart-
phones. None of the test subjects had used a LEGO
modelling application before.

4.2 Apparatus

Tests were conducted in a closed environment, featur-
ing: a computer (with mouse and keyboard) running
LDD and MLCad; and our multi-touch enabled sur-
face (1.58x0.87m optical tabletop), which is depicted
in Figure 10. With the users’ permission, tests were
videotaped and comments were transcribed from au-
dio recording.

4.3 Test Description

Tests were structured in four stages: a pre-test ques-
tionnaire to establish user profile; briefing about test
purpose and training session; three tasks (one for each
application, each preceded by a demonstration of the
application); followed by a questionnaire after com-
pleting the task in each application. To ensure even
test distribution of the applications, we alternated the
application order for each user.

Each test session was comprised of three situations:
LDD, MLCad (both running on a desktop computer
with a mouse device) and LTouchIt (on the table-
top). For each application the user was required to
build the LEGO model depicted in Figure 11. Users
were given a sheet of paper, describing the desired
task (step-by-step building instructions), resemblant
of a construction guide that come with real LEGO
model kits. Users were encouraged to study the model
beforehand, although they were free to consult it
throughout the task.

7

Figure 11: (a) The LEGO model; (b) Test briefing.

15:14
12:17

15:29

LTouchIt LDD MLCad

Figure 12: Average task completion time (mm:ss) per
application.

The LEGO model (Figure 11) contains several
bricks of different types and colours, thus users were
required to search through different groups and paint
with different colours. Also, the inclusion of repeated
bricks in the model allowed us to understand if users
prefer to pick the same brick from the list or to
clone it. Finally, building this model requires rotating
bricks around all three axes.

All participants received a LEGO model kit, as
gratitude for the time spent in our evaluation.

4.4 Results

We present three different perspectives on the
analysis of the results from our user study. Firstly,
we present a quantitative analysis drawn from task
completion times in each application; we follow with
a qualitative analysis based on the questionnaires;
and finally, we discuss several observations captured
throughout the test sessions.

4.4.1 Task Completion Time

For each application, we measured the time required
to complete the construction of the model. The re-
sults follow a normal distributed, accordingly to the
Shapiro-Wilk test. Thus, we subjected our results to
an One-Way ANOVA test, which suggested that sta-
tistically significant differences existed (F2,57=4.123,

LTouchIt LDD MLCad

Fun* 3,0 (1) 3,0 (2) 2,0 (2)

Move* 4,0 (1) 3,0 (2) 4,0 (1)

Rotate* 4,0 (1) 2,0 (1) 3,0 (1)

Pan 4,0 (1) 4,0 (1) 3,0 (2)

Orbit 4,0 (1) 4,0 (0) -

Zoom 4,0 (1) 4,0 (0) 4,0 (0)

Search* 4,0 (1) 3,0 (1) 2,0 (1)

Clone 4,0 (0) 4,0 (1) 4,0 (2)

Paint* 4,0 (0) 3,5 (1) 3,0 (1)

* indicates statistical significance

Table 1: Questionnaire results for each application
(Median, Inter-quartile Range).

p¡.05). A Post-hoc Tukey HSD multiple comparisons
test revealed that the LDD was significantly different
from MLCad.

The average completion time for each application is
depicted in Figure 12. LDD, due to inclusion of colli-
sion detection and brick adaptation systems, was the
fastest. MLCad, although fast for some 3D expert
users, was generally the slowest. LTouchIt, despite
using an interaction paradigm which participants are
not acquainted, and without the automatic brick fit-
ting, was able to perform slightly faster than ML-
Cad.

4.4.2 User Feedback

In the questionnaires, we asked users to classify, us-
ing a 4 points Likert scale (1 - none, 4 - very), each
application regarding: how fun it was to use; how
easy it was to manipulate bricks (translation and ro-
tation); camera control (pan, orbit and zoom); search
and retrieve bricks; clone bricks; and paint. The par-
ticipants’ ratings are shown in Table 1. The Wilcoxon
Signed Rank Test was used to assess statistically sig-
nificant differences.

Users strongly agreed that MLCad is less fun than
LTouchIt and LDD (Z=-3.043, p=.002 and Z=-
2.586, p=.010). Concerning brick manipulation, users
strongly agreed that MLCad is easier to use than
LDD (Z=-1.979, p=.048). The LDD brick adapta-
tion system, although efficient in most cases, might
give frustrating outcomes occasionally. For instance,
when the user wants to place a brick side by side with
another, depending on the perspective, the applica-
tion might place it above or below the first, which
is incorrect for the user. Also for brick manipula-
tion, LTouchIt classification is very close to ML-
Cad. Moreover, users strongly agreed that rotat-
ing bricks is more difficult in LDD than in LTou-
chIt or MLCad (Z=-3.125, p=.002 and Z=-2.045,
p=.041). Participant commentaries suggest that the
virtual handles of LTouchIt are preferred over the
rotation buttons in the MLCad interface.

Regarding camera manipulation, none stood out.

8

The gestures used in LTouchIt were able to compete
with other applications solutions with no significant
differences in users’ preference. Since MLCad does
not allow camera rotation in the editable viewports,
we did not include the orbit classification for this ap-
plication.

To retrieve the desired bricks from list, users
strongly agreed that LTouchIt was easier than
LDD and MLCad (Z=-3.493, p¡.001 and Z=-3.697,
p¡.001). The same is observed for the user prefer-
ences regarding colouring bricks (Z=-2.877, p=.004
and Z=-3.166, p=.002), with LTouchIt above the
remainder. Our clone feature showed less deviation
than LDD and MLCad, suggesting that the gesture
was found understandable by most users, even when
compared to the clone mode in LDD and the key-
board shortcuts used in MLCad to “copy and paste”
bricks.

4.4.3 Observations

We observed throughout user evaluation that orthog-
onal viewports paradigm, which is employed in ML-
Cad, is not natural for non CAD experts. Conversely,
we witnessed that our solution simplifies 3D manipu-
lations for non expert users.

In MLCad users shown no problems in rotating
bricks, since viewports allow the user to maintain dif-
ferent views of the model. In this case, all interac-
tions are 2D, because they take place on the view-
ports, rather than on a perspective view. In LDD
users tend to have occasional problems with 3D rota-
tions, because the rotation operation is perspective-
dependent, and the available rotation axes are not
identified, which most users found frustrating. Our
solution goes one step further, by allowing 3D manip-
ulation with free camera, but avoiding the aforemen-
tioned issues.

Furthermore, user comments suggest that the
LTouchIt pick metaphor tends to be more natural
than the brick selection in LDD. In LTouchIt, once
a brick is picked, the user inherently knows that it is
being held, since the two fingers are in contact and
the pick and move gestures are fluidly merged. Con-
versely, LDD requires the user to click on the desired
brick and, once again, click for placing it in the target
position, thus, not providing tactile feedback that the
brick was held. This observation also conforms with
the known advantages of direct over indirect manip-
ulation [6].

We observed that most users found our clone ges-
ture to be a fast technique for speeding up construc-
tions that often have repeated bricks, such as walls.

5 Conclusions

In this paper we presented a system for virtual LEGO
modelling, specifically designed for multi-touch table-
top devices. These devices offer new interaction pos-
sibilities, but also several challenges that must be sur-

passed. We focused primarily on multi-touch manip-
ulation of 3D objects on a large surface, developing a
set of gestures that can be applied into a variety of
research domains, outside the LEGO scope.

We conducted and evaluation with 20 users, com-
paring our proposal with two LEGO applications. Re-
sults suggest that our interactive application is in tune
with its competition, yet it provides a hands-on ex-
perience, one that we believe to be more adequate for
entertainment and educational purposes than exist-
ing LEGO applications. Furthermore, from user com-
mentaries and questionnaire analysis, we can conclude
that most participants found it easy to manipulate 3D
objects without expertise in CAD or 3D software.

Our findings are generalizable towards research on
interaction with 3D objects for multi-touch tabletops.
Our tests showed that users are comfortable with sep-
aration of rotation and translation into atomic ac-
tions (as stated in [9]) rather than allowing com-
bined actions. Also, these manipulations are sepa-
rated in DOFs, which we found helpful for novice
users. Translation can be performed on plane (two
DOFs) which maps directly to the device affordance,
since tabletops offer bi-dimensional input (X-Y for the
touch coordinates). Whereas for rotation only one
degree is considered at a time, since users found mul-
tiple DOFs to be more cognitively demanding. This
seems to corroborate with [1, 9] as user agreeabil-
ity over gestures for 3D rotation lean towards actions
that manipulate one DOF at a time.

Furthermore, our scenario addressed manipulation
of small objects on a low resolution input device (since
not all tabletops are able to distinguish very close fin-
ger touches). Methods such as Sticky Fingers [4] re-
quire that three fingers are placed on an object, which
for small objects can be problematic since the object
size must be at least wide enough to accommodate all
fingers in a comfortable position. The usage of han-
dles overcomes this situation, since the manipulation
is no longer directly on the object, as proposed for 2D
and 3D multi-touch interactions by [11, 1].

6 Future Work

We believe that our system can evolve from the cur-
rent prototype to a fully fledged tool for LEGO fans
of all ages. To achieve this vision, new features can be
developed, such as: collision detection (fitting bricks
together automatically); improving upon brick re-
trieval (one that will fit into larger sets of data); sup-
port all standard LEGO bricks; group selection (ma-
nipulate multiple bricks at once); and finally, multi-
user collaboration around the same tabletop. These
functionalities raise a whole new set of challenges to
be tackled in the future.

References

[1] A. Cohé, F. Decle, and M. Hachet. tBox: A
3D Transformation Widget designed for Touch-

9

screens. In ACM CHI Conference on Hu-
man Factors in Computing Systems, Vancouver,
Canada, May 2011.

[2] B. Conner, S. Snibbe, K. Herndon, D. Rob-
bins, R. Zeleznik, and A. Van Dam. Three-
dimensional widgets. In Proceedings of the 1992
symposium on Interactive 3D graphics, pages
183–188. ACM, 1992.

[3] M. Hancock, S. Carpendale, and A. Cockburn.
Shallow-depth 3d interaction: Design and eval-
uation of one-, two-and three-touch techniques.
In Proc. CHI 2007, pages 1147–1156, New York,
NY, USA, 2007. ACM Press.

[4] M. Hancock, T. ten Cate, and S. Carpendale.
Sticky tools: Full 6DOF force-based interaction
for multi-touchtables. In Proc. ITS, pages 145–
152, 2009.

[5] M. S. Hancock, F. Vernier, D. Wigdor,
S. Carpendale, and C. Shen. Rotation and trans-
lation mechanisms for tabletop interaction. In
Proc. Tabletop, pages 79–86. IEEE Press, 2006.

[6] K. Kin, M. Agrawala, and T. DeRose. Determin-
ing the benefits of direct-touch, bimanual, and
multifinger input on a multitouch workstation.
In Proceedings of Graphics Interface 2009, pages
119–124. Canadian Information Processing Soci-
ety, 2009.

[7] R. Kruger, S. Carpendale, S. Scott, and A. Tang.
Fluid integration of rotation and translation. In
Proceedings of the SIGCHI conference on Hu-
man factors in computing systems, pages 601–
610. ACM, 2005.

[8] A. Martinet, G. Casiez, and L. Grisoni. The de-
sign and evaluation of 3d positioning techniques
for multi-touch displays. In 3D User Interfaces
(3DUI), 2010 IEEE Symposium on, pages 115–
118. IEEE, 2010.

[9] A. Martinet, G. Casiez, and L. Grisoni. The ef-
fect of dof separation in 3d manipulation tasks

with multi-touch displays. In Proceedings of
the 17th ACM Symposium on Virtual Reality
Software and Technology, pages 111–118. ACM,
2010.

[10] D. Mendes and A. Ferreira. Virtual lego mod-
elling on multi-touch surfaces. In WSCG’2011
Full Papers Proceedings, pages 73–80, 2011.

[11] M. Nacenta, P. Baudisch, H. Benko, and A. Wil-
son. Separability of spatial manipulations in
multi-touch interfaces. In Proceedings of Graph-
ics Interface 2009, pages 175–182. Canadian In-
formation Processing Society, 2009.

[12] J. Reisman, P. Davidson, and J. Han. A screen-
space formulation for 2d and 3d direct manipu-
lation. In Proceedings of the 22nd annual ACM
symposium on User interface software and tech-
nology, pages 69–78. ACM, 2009.

[13] T. Santos, A. Ferreira, F. Dias, and M. J. Fon-
seca. Using sketches and retrieval to create
lego models. EUROGRAPHICS Workshop on
Sketch-Based Interfaces and Modeling, 2008.

[14] K. Shoemake. Arcball: a user interface for
specifying three-dimensional orientation using a
mouse. In Graphics Interface, volume 92, pages
151–156, 1992.

[15] A. Van Dam. Post-wimp user interfaces. Com-
munications of the ACM, 40(2):63–67, 1997.

[16] A. Wilson. Simulating grasping behavior on
an imaging interactive surface. In Proceedings
of the ACM International Conference on Inter-
active Tabletops and Surfaces, pages 125–132.
ACM, 2009.

[17] J. O. Wobbrock, M. R. Morris, and A. D. Wil-
son. User-defined gestures for surface computing.
In Proceedings of the 27th international confer-
ence on Human factors in computing systems,
CHI ’09, pages 1083–1092, New York, NY, USA,
2009. ACM.

10

