
Creepy Tracker Toolkit for Context-aware Interfaces

Maurı́cio Sousa1,*, Daniel Mendes1,*, Rafael Kuffner Dos Anjos1,2,*, Daniel Medeiros1,*,
Alfredo Ferreira1,*, Alberto Raposo3,†, João Madeiras Pereira1,* and Joaquim Jorge1,*

1Inesc-ID / Universidade de Lisboa, 2FCSH / Universidade Nova de Lisboa, 3Tecgraf, PUC-Rio Brasil
*{antonio.sousa, danielmendes, daniel.medeiros, alfredo.ferreira, joao.madeiras.pereira,

jorgej}@tecnico.ulisboa.pt, †abraposo@tecgraf.puc-rio.br

Figure 1. Creepy Tracker is an open-source toolkit that provides spatial information about people and interactive surfaces. To do this, it resorts to
multiple depth sensing cameras (A, B). It helps the design of systems that handle, for instance, (C) interactive tabletops, (D) vertical surfaces, (E) floor
projections and even capture avatars for (F) telepresence or (G) virtual reality.

ABSTRACT
Context-aware pervasive applications can improve user experi-
ences by tracking people in their surroundings. Such systems
use multiple sensors to gather information regarding people
and devices. However, when developing novel user expe-
riences, researchers are left to building foundation code to
support multiple network-connected sensors, a major hurdle
to rapidly developing and testing new ideas.

We introduce Creepy Tracker, an open-source toolkit to ease
prototyping with multiple commodity depth cameras. It auto-
matically selects the best sensor to follow each person, han-
dling occlusions and maximizing interaction space, while pro-
viding full-body tracking in scalable and extensible manners.
It also keeps position and orientation of stationary interactive
surfaces while offering continuously updated point-cloud user
representations combining both depth and color data. Our per-
formance evaluation shows that, although slightly less precise
than marker-based optical systems, Creepy Tracker provides
reliable multi-joint tracking without any wearable markers or

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ISS ’17, October 17-20, 2017, Brighton, United Kingdom
© 2017 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4691-7/17/10...$15.00
https://doi.org/10.1145/3132272.3134113

special devices. Furthermore, implemented representative sce-
narios show that Creepy Tracker is well suited for deploying
spatial and context-aware interactive experiences.

Author Keywords
Context-aware Computing; Toolkit; Rapid-Prototyping

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
User Interfaces – Input devices and strategies

INTRODUCTION
Human-Computer Interaction (HCI) researchers strive to un-
derstand context to anticipate user requirements when design-
ing novel experiences. Context-aware computing relates to
interactive systems that leverage different sensing methods
to gather understanding about their surroundings [31]. More-
over, context-awareness is an essential foundation of ubiqui-
tous [40] and pervasive systems [4]. Recently, the interaction
space and the physical relationships between people and inter-
active devices have been the focus of much research. Indeed,
recent developments using spatially-aware ubiquitous environ-
ments can infer interactions and even people’s intentions to
interact using fused sensor data [17, 18]. The emergence of
commodity depth sensors, such as the Microsoft Kinect, con-
tributed out-of-the-box tracking approaches to focus ubicomp
researchers’ attention on the interaction design and user expe-
rience. However, depth cameras limitations can create barriers

191

https://doi.org/10.1145/3132272.3134113

to the design and evaluation of new interaction approaches
and techniques. In fact, single depth cameras cannot handle
occlusions. While multiple cameras can mitigate this problem,
they generate large volumes of network traffic for real-time
data streaming. Furthermore, combining data from multiple
coordinate systems (one per sensor) require additional process-
ing and calibration methods. These issues must be addressed
before any attempt to designing novel user experiences.

In this work, we present the Creepy Tracker Toolkit, a set
of open-source1 software tools to aid rapid-prototyping of
context-aware interactive systems using multiple depth cam-
eras. The proposed tools allow seamless installation and offer
a backbone for developing such systems, thus concealing the
complexity inherent to current approaches. We followed a
conceptual line parallel to the work from Seyed et al. [32].
Our tracker consists of a network server that combines data
from multiple depth sensors to provide full-body positional
tracking of people within a room-sized volume. The toolkit
manages the spatial locations of interactive surfaces and can
easily infer spatial relationships to the people surrounding
them. Also, it supports flexible full-body point-cloud represen-
tations of people. For the purpose of this work, we consider
the definition of context provided by Dey et al. [10], which
is the knowledge of “location, identity and state of people,
groups, and computational and physical objects”. To this end,
the Creepy Tracker toolkit combines multiple depth sensors to
provide full-body positional tracking of people and tools to ac-
quire precise locations of interactive surfaces, while providing
a networked stream of context data front-end applications.

The contributions of this work are thus: (1) a set of tools
for rapid-prototyping context-aware applications, that incor-
porates body tracking, interactive surfaces and point-cloud
representation of people; (2) different scenarios that can be
implemented using our toolkit; and (3) practical considera-
tions when using Creepy Tracker, obtained from a system’s
performance evaluation. In this work, in addition to disclos-
ing an open-source toolkit, we also detail how we overcame
every major technical obstacle. In what follows, we review
relevant related work, and detail the toolkit design and imple-
mentation. Furthermore, we demonstrate the scalability and
performance of our toolkit using five Microsoft Kinect depth
cameras to evaluate its accuracy and capabilities. We also pro-
vide a discussion of the evaluation results. Finally, we explore
the design space of context-aware applications built on top
of Creepy Tracker by demonstrating five different application
scenarios.

RELATED WORK
Our work builds on prior research in two main areas: (1)
Context-aware and Ubiquitous Environments and (2) Marker-
less Human Tracking. In the following subsections we discuss
related work in these areas, focusing on the advantages and
limitations of previous endeavours.

Ubiquitous and Context-aware Environments
Mark Weiser [39] suggested that computing technologies
would move beyond devices towards being embedded in the

1Github: https://github.com/vimmi3D/CreepyTracker

environment, in order not to intrude on people’s daily tasks.
Indeed, ubiquitous environments are becoming commonplace
due to the rise of interactive devices and advances on sensing
technologies [30]. Therefore, by sensing the situation of the
environment, digital systems can use that knowledge to infer
intent to interact [31]. Context-aware interactions can thus
exploit what is happening in close proximity of a person or
device. Matthews et al. [24] developed a toolkit that examines
context by grabbing users’ attention to peripheral displays.
Annett et al. [2] demonstrated a proximity-aware tabletop that
determines users’ presence, position and the arm which is
interacting with the display. Jota et al. [22] described the
interaction design space on and above horizontal interactive
surfaces. Interactive vertical display interfaces can also benefit
from the environmental context. Vogel et al. [38] proposes
an interaction framework for interactive public displays. The
authors map out the area in front of a vertical display into am-
bient, implicit, subtle and personal interactive spaces. When a
person is transitioning between those spaces, the ambient dis-
play can display different contextual information based on the
person’s proximity, ranging from public details at a distance
to a more private information, when in close proximity. Also,
with proper sensing technologies, context-aware systems can
react to the normal everyday interactions of groups of peo-
ple [21]. Edward Hall introduces the Proxemic Theory [14]
and observed that space, distance and orientation between peo-
ple impact the way they interact with each other. Ballendat
et al. [7] suggested that knowledge about the way people po-
sition themselves can be exploited in ubicomp environments
to start or end interactions, establish connections, and even,
automatically transfer personal files between devices. Pushing
this notion further, Marquardt et al [19] applied proxemics to
explore the design space in ubicomp environments to medi-
ate interactions between people and their personal and public
devices.

Marker-less Human Tracking
Our work builds on previous research on instrumenting the en-
vironment instead of requiring users to carry physical tracking
devices [16]. Antifakos and Schiele [3] demonstrated that wifi
networks are able to detect proximity. Fails and Olsen [11]
proposed a technique to sense hand gestures to interact with
surfaces via skin color detection using RGB cameras. How-
ever, recent developments in commodity depth cameras allow
people tracking [41] in expeditious manners.Depth cameras
can disambiguate color images with depth information [1]
and allow devices to estimate human poses [33]. Wilson and
Benko [42] presented LightSpace, a prototype that combines
depth cameras and projectors to provide interactions on and
between multiple surfaces. People can transfer and manipulate
objects in one surface, “pick” and “drop” on another device.
LightSpace employs multiple depth cameras calibrated to the
same coordinate system. It is also the first approach to com-
bine depth data from multiple depth cameras. Sousa et al. [35]
also used multiple depth cameras to deal with body occlusions
in a remote collaborative environment for groups of people.
Yet, their tracking approach did not consider users’ orienta-
tion and full body tracking. The Proximity Toolkit [20] uses
sensor fusion to gather data from multiple different tracking

192

https://github.com/vimmi3D/CreepyTracker

systems to gather proxemic data about people and devices.
The toolkit combines skeleton data from depth cameras for
body tracking with a marker-based system to track devices.
Developers can create user experiences using both the tracked
entities and the proxemic relationships between them. De-
spite having the same motivation, our approach focuses not
on the relationships between entities, but rather deals with
combining multiple depth sensors. In this work, we address re-
solving multiple skeletons into persons, choosing the optimal
sensor for each person while avoiding orientation errors when
tracking people from behind. More recently, Wu et al. [44]
presented EagleSence, a top-view camera-based system for
tracking people’s position, orientation and activities. A top-
view approaches minimize body occlusions by other people,
although, as reported by the authors, this approach proves to
be difficult when acquiring body skeleton joints.

Seyed et al. [32] tackled a similar challenge to ours. They
introduced the SoD-Toolkit. It offers a set of tools for tracking
people, interactions between them and devices using multiple
sensors. Our Creepy Tracker follows some of the concepts
from SoD-Toolkit, further exploring them. Indeed, we focus
on continuous 3D spatial context and full body tracking of
multiple people. Moreover, we allow for explicit and accu-
rate surfaces’ calibration, as well as point-cloud user virtual
representation. In the following sections we thoroughly detail
how Creepy Tracker operates and the main algorithms used.
Finally, we evaluate our tracker regarding latency and accuracy
against a maker-based optical system, developed specifically
for motion capture and computer generated imagery.

CREEPY TRACKER
The Creepy Tracker toolkit uses a network of distributed sensor
units connected to a central hub. Each sensor unit is composed
of a Microsoft Kinect depth camera and standalone C# appli-
cation running on a single computer. The number of sensors
is directly related to the area required by the interaction be-
ing designed. Interactions with a single typical (up to 4×2m)
vertical surface may require one or two units, while interac-
tions around a tabletop most commonly need several (up to 5)
sensors surrounding that surface. Each sensor unit provides a
continuous data stream. These converge on the tracker’s cen-
tral hub, which is responsible for synchronization, processing
and merging the data, as depicted in Figure 2. The central hub
also broadcasts the state of the tracked environment to client
applications. Moreover, for the virtual model of the tracked
people and surfaces to be precisely aligned with the physical
topology of the room, the sensors’ position and orientation
must be first calibrated. Adding surfaces requires an active
calibration for each new surface by defining the surface plane
using 3D depth data of one sensor. After calibration, as people
move in the tracked area, the virtual model gets updated in
real-time, while broadcasting the updated data. In this section,
we provide a detailed overview of the system’s components,
describing their implementation and application.

Sensor Unit
All sensor units, each of them connected to an individual
depth sensor, capture color, depth data and the body tracking
model of every observed person in the tracked area. Each body

Figure 2. Overall system’s architecture.

model is associated with a numerical factor to represent the
estimated degree of confidence about the quality of the tracked
person, which is sent together with the body model data. The
confidence factor is calculated by adding all tracked body
joints’ weight, while discarding inferred ones. The weight of
each joint can be customizable, so that the tracker can favor
specific joints, useful for different scenarios. For instance,
pointing tasks require far more importance given to hands’
than feet’ joints. Figure 3A shows a individual sensor client
tracking two people, the person closer to the camera has a
lower degree of confidence because half of the lower limbs’
joints cannot be seen. Tracked people with confidence factors
below a configurable threshold are ignored. Color and depth
data are processed for the point-cloud representation of each
person. The body tracking model is broadcast to the Tracker
Hub using an UDP stream, while point-clouds are available
via a concurrent TCP connection.

Tracker Hub
The Tracker Hub component handles the unified model of the
tracked area by combining the data streams from all sensor
units. To create a reliable model, the Tracker Hub requires a
calibration process to transform all received data into a single
coordinate system. Figure 3A shows three calibrated sen-
sors with both position and orientation matching the physical
cameras. Data received from each of those sensor units will

Figure 3. Creepy Tracker’s (A) sensor unit and (B) surface calibration
application.

193

be spatially correct in the unified model’s coordinate system.
Analogously, a surface calibrated on one depth camera’s co-
ordinate system also is transformed to match the area of the
physical one, as shown in Figure 1A. Since a surface is a
collection of four fixed points in space, the setting up and
calibration process needs to occur only once. The Tracker
Hub is a Unity3D application that acts as broadcast server of
the unified model to application clients.

Calibration Method
A calibration process is required to unify all data streams into
a single coordinate system. For this Creepy Tracker relies on
the body tracking model of a person from each sensor unit to
calculate the new global coordinate system and all cameras’
position and orientation. The calibration process requires one
standing person to be seen by all sensor units, in two discrete
steps. Figure 4A shows five uncalibrated sensor units before
the calibration process.

Creepy Tracker requires calibration parameters from body
tracking models at two distinct locations separated by the
distance of a step to calculate the origin and forward and up
vectors of the new calibrated coordinate system. In the first
step, the position of the person is used to define the origin. The
up vector, defined by the spine base and spine shoulder joints
of the body model, is also stored, as well as the position of both
feet. The second calibration step can be performed after the
person moves a step forward (Figure 4B). This new position
is used in conjunction with the first to define the coordinate
system forward vector. The second up vector is averaged
with the first to minimize the impact of incorrect poses when
calculating the final up vector. Finally, the minimum height
according to the up vector of the four feet positions is used to
define floor’s position. Figure 4C shows five calibrated sensors
around the coordinate system’s origin.

This calibration is usually enough for most interactive scenar-
ios. However, we reckon that a more precise calibration might
be needed for more demanding cases. For such situations, we
created an additional calibration step. It consists of capturing
a depth data frame of each sensors and displaying them using

Figure 4. Calibration process: (A) center; (B) step forward; (C) result;
and (D) calibration cube for manual adjustments.

point-clouds, with a simple object placed in the middle of the
tracked area. For this, we resort to a cardboard cube with
a coloured checkerboard in each face (Figure 4D). Then, is
possible to manually adjust position and rotation parameters of
each sensor, so that the point clouds match as well as possible.

A new calibration process is required when the setup undergo
any adjustment or modification in sensor units.

Adding Surfaces
The Creepy Tracker Toolkit also contributes with a standalone
C# surface calibration tool (Figure 3B). We consider surfaces
with three common standard aspect ratios: 4:3, 16:9 and 9:16,
for surfaces in portrait mode. Our calibration tool treats a
surface as a subspace of an infinite geometric plane restricted
by the size and aspect ratio of the physical surface. The sur-
face calibration method requires the mouse click input (on the
calibration application) of two corner points from the same
edge (surface’s bottom left and bottom right) to define size
and position, and a third inner point to calculate the surface’s
normal vector. Only three points spare the need for a depth
sensor to have the entirety of the surface in its field-of-view.
Figure 3B shows a calibrated 9:16 vertical surface with the
manually selected points. By knowing the position and orien-
tation of the calibrated sensor from which the surface’s points
originated, the surface is then transformed to the tracker’s
coordinate system.

Tracking People
The Tracker Hub formalizes a body tracking model from the
sensor unit into a Body entity and a person into an instance of
Human. Overlapping individual body tracking models from
different sensor units map into a single person. Consequently,
a Human preserves a set of Bodies, one for each seen by a
sensor unit.

When information regarding a new Body arrives, the Tracker
Hub will try to fit that body in a Human within a parame-
terizable distance threshold. This threshold is set by default
to 30 cm, to account for different sensors’ perspectives, as it
is impossible for two people to have their Spine Base joints
closer than this threshold without intimate space violations.
The distance is calculated according to Spine Base joints of
both Bodies. If there is no suited Human, a new one is created.
When a Body is no longer seen by its sensor, it is dissociated
from the corresponding Human. If a Human has no more
associated Bodies, it will enter a waiting period of 1 second.
During that period, if a new Body appears within the distance
threshold from the Human’s last position, it is associated to
that Human, which exits from the waiting period. Otherwise,
if no Body is associated with the Human until the waiting
period expires, the Human is removed from the tracker.

Each Human entity is constantly choosing the most appro-
priate Body by selecting the one with the highest confidence
value. It is not always easy to acknowledge for sure where
people are turned to, as some sensors may be facing each
other and perceiving mirrored body models for the same per-
son, because the Microsoft Kinect cannot distinguish between
people facing forwards or backwards. To overcome this, we
follow two approaches. Firstly, we consider a disambiguation

194

pose consisting of having at least one forearm approximately
parallel to the floor. The direction one is pointing at, can be
used to define that person’s forward vector, as it would be both
unnatural and very difficult to accomplish such a pose with
the arm pointing backwards. When this vector’s direction is
opposite from the current Human’s forward, we automatically
mirror Body’s left and right data. Secondly, as front and back
switching occurs mainly when a Body from a different sen-
sor is chosen, we also mirror the Body when the Human is
detected to rotate faster (approximately 180 degrees in two
consecutive frames) than it is humanely possible.

To deal with the known noisy skeleton information from
the Microsoft Kinect, we implemented a double exponential
smoothing filter [6]. The filter’s parameters can be configured
to achieve a compromise between smoothness and added la-
tency. This filter is applied to Human’s joints, not to Bodies,
and helps when dealing with sensor switching in setups with
coarse calibrations.

Point-cloud Representations
Using real-time body representations can enhance interac-
tive scenarios for collaborative telepresence [27], computer-
assisted rehabilitation [36] and immersive virtual reality [34].
Our approach relies on processing separate streams of point
clouds. Each individual sensor unit first captures the skele-
tal body model data for each person in its field-of-view. We
create a point-cloud by combination depth and color values
captured by the camera. Then the person’s relevant points are
segmented from the background. Figure 5 shows the resultant
streamed body representation. When interacting with applica-
tions using the body representation, different cameras will be
sending very similar information. However, due to network,
processing and rendering constrains, integration of different
streams or redundancy resolution is not performed. We im-
plement a task-oriented decimation, taking into account what
body parts are more relevant. To this end, we attribute differ-
ent priorities to each joint of the available Body information
according to user-defined parameters. To wit, in collabora-
tive telepresence scenarios, head, face and hand non-verbal
communication cues are more relevant than capturing other
body parts. Whereas in first-person virtual reality scenarios,
detailed hands are more valuable and head information can be
totally discarded.

Thus, for each point in the segmented cloud, we calculate its
euclidean distance to the body joints marked as relevant on

Figure 5. Point-cloud body representation: (A) front, (B) side and (C)
top views.

the sensor units. If this distance is smaller than a threshold
value (proportional to the user’s body height), this point is
marked as a high quality point for transmission. Points not
marked as high quality, are sampled at a lower frequency to
reduce data redundancy on less relevant areas. For each point,
sensor units transmit 3D point coordinates, color, and a data
bit to indicate high or low quality. This last bit is used to
adjust the rendering parameters in the application client. Each
coordinate in a 3D point is multiplied by 1000 and rounded to
the closest integer, to assure millimeter precision, and packed
into two bytes. Data read through the network is then parsed
and rendered in the environment using surface-aligned splats
at 30 frames per second. While higher quality points are more
tightly spaced, requiring smaller splat sizes, we use larger
splats in under-sampled regions to create closed surfaces.

Using Tracker Data
Creepy Tracker offers a client-side C# API with a layer to ren-
der network communication transparent and provide updated
encapsulated abstractions of tracking data. Figure 6 shows the
data model put up by the API.

An independent tracker client, upon connection, continuously
receives a list of Humans and can request at any time a list
of available Surfaces. A Human is a representation of a real
person in tracked area. It holds an unique identification pro-
vided by the tracker, a point in space correspondent to the
person’s position, a client-side calculation of the person’s di-
rection and a list of all body joints. This is specially useful a
application scenario requires the spatial distribution and prox-
imity relationships between people. We defined a surface as
a geometric plane. The Surface entity is a combination of a
center point, a normal vector and the four vertexes to define
the surface’s edges. Making it easy to calculate if a person is
near, approaching or facing the surface’s front side. Next, we
demonstrate how to exploit the tracker’s API and resources to
develop five different sample scenarios.

Tabletops
Multitouch tabletops with large screens enable simultaneous
interactions from multiple people and foster collaboration by

Figure 6. Creepy Tracker client-side API classes + properties.

195

Figure 7. Tabletop context-aware example: (A) idealized interaction de-
sign and (B) calibration setup.

allowing individual interactions with common content [15, 23].
To explore this scenario, we devised an interactive tabletop
application that enables people to take temporary ownership
of digital content. Figure 7A depicts the interaction design
rational for a tabletop application that utilizes context-aware
information provided by Creepy Tracker. Users can get hold
of digital content by touching it and the selected content starts
following the person around until another touch breaks the
temporary lock. For this, four depth cameras were distributed
around the room with a calibrated surface right in the center
of the tracked area, as shown in Figure 7B. Since a tabletop
can provide multitouch inputs, associating content to a person
during a selection requires the distance of all the users’ hands
spatial position to the point of touch. The person with the
nearest hand takes ownership of the digital content. From here,
the digital content follows the user around, until another touch
gesture is detected.

Wall-sized Displays
Bolt’s Put-that-there [9] multimodal interface is a canonical
approach to interact with objects in large scale displays. Put-
that-there combines pointing gestures with speech recognition
to select objects and define target locations. We designed an
adaptation of Bolt’s seminal system using body pose informa-
tion to create and move objects with different shapes and col-
ors, as depicted in Figure 8A. To avoid the occlusions in front
of the large display, we opted for placing depth cameras on
both sides of the screen, as demonstrated in Figure 8B. Instead
of a laser, we utilized the image-plane pointing technique [28].
Therefore, when the tracker client detects a relevant utterance
(”that” or ”there”), intersecting the vector, that starts in the
user’s head through the raised hand, with the surface plane,
the target position can be determined.

Floor Projected Surface
Using large floor projected interfaces provide sufficient space
to promote interactive visualizations [5, 37] and shared social

Figure 8. Bolt’s Put-That-There with the Creepy Tracker: (A) idealized
interaction design (B) calibration setup.

Figure 9. Asteroids game on the floor: (A) idealized interaction design
and (B) calibration setup.

user experiences [12, 13]. We design a playful projection-
based collaborative game based on the classic arcade space
shooter Asteroids, released by ATARI, Inc in 1979. A player
can use their own body position and orientation to destroy
asteroids, as depicted in Figure 9A. While the projected floor
surface serves to display the game view and players can control
a spaceship placed exactly below them, automatically firing
space bullets in the users’ forwards direction at a fixed rate.
Figure 9B shows the tracker’s setup with five cameras and a
calibrated 4:3 surface on the floor. For this experience, we
resorted to Human’s position and orientation for steering the
ship and utilized the Surface to map the players’ positions.

Telepresence Portals
Taking inspiration from the Office of the Future by Raskar et
al. [29], we designed a telepresence experience to connect two
remote locations. Indeed, depth sensors have already been
used to create highly realistic avatars in remote collaboration
scenarios [26], but with custom hardware and cluster-based
rendering. Creepy Tracker can be used to show real-time real-
istic user representations using commodity hardware, easing
the development of approaches similar to the work of Beck et
al. [8]. This approach allows for verbal and non-verbal com-
munication, and at the same time, creates a seamless visual
continuity from the local to the remote location, as depicted in
Figure 10A. The portals implicitly establish or cease the link
between them by allowing a person to transition between a
non-interactive space to a explicit interactive space, similarly
to Vogel et al. [38]. Therefore, to initiate link between two
portals, someone simply needs to walk into close proximity
of the surface, triggering a presence notification on the other
side. Analogously, the receiver of the notification can proceed
by walking towards the portal to accept the connection.

For this, sensors were placed on each side of the surface to
capture a point-cloud of the user, combining information from
both sides of the body, as shown in Figure 10. Then, the

Figure 10. Telepresence scenario: (A) idealized interaction design and
(B) calibration setup.

196

Figure 11. Virtual Reality game: (A) idealized interaction design and
(B) calibration setup.

setup was replicated in another remote location. The distance
between Humans and Surfaces were used to established and
destroy the communication link. While PointCloudData was
used to start streaming remote people.

Virtual Reality Interactions
Multiple depth sensors setups have been deployed to capture
full body data to animate generic avatars and explore novel
interaction techniques in virtual reality [25]. Using several
sensors allow users to freely navigate the interactive space. In
such immersive virtual environments, realistic self representa-
tion enhance the perception of being there [34]. We designed
a virtual reality gaming experience that takes advantage of full
body point-cloud representations aided by body joints’ posi-
tions. Therefore, we idealized a gaming zone where people
have to catch basketballs thrown at them by three surrounding
cannons. Figure 11A depicts a person trying to catch a bas-
ketball. We placed five cameras around a room for maximum
body coverage as demonstrated in Figure 11B. PointCloud-
Data was used to render the user’s body and the tracker was set
up to ignore the user’s head when streaming. Human’s hand
joints were used to distinguish touching on a basketball. Still,
all joints were used to build the person’s bounding volume for
the basketballs to collide and bounce back. Also, a Surface
was used to define the gaming area.

EVALUATION
We carried out a performance evaluation against a marker-
based infrared tracking system as a baseline. The goals of
our evaluation were to determine how the system’s differs
from a highly accurate marker-based tracker and determine
body tracking consistency using a stress test. Besides, this
evaluation serves to inform design decisions when developing
future context-aware interfaces.

Design
We devised three different evaluation tasks, depicted in Fig-
ure 12. For this, a logger application was developed to com-
bine data from the two tracking streams by matching both
coordinate systems. The logger was able to record, into file,
sessions containing timestamps per frame, the spatial position
from a person’s right hand from our tracker and the position of
a rigid-body marker attached to that person’s right hand from
the baseline tracker.

Therefore, the evaluation consisted of a latency task, and two
tasks to measure the accuracy and consistency of our tracker
by observing a single person holding an infrared marker. To
calculate the average latency we recorded a raising gesture

Figure 12. Evaluation tasks: (A) hand raise, (B) spin about oneself, and
a (C) circular path with multiple people.

of the right hand five times. Figure 12A depicts the first task.
The second task, depicted in Figure 12B, required a tracked
person to fully spin about oneself to test for accuracy, with the
purpose of forcing our tracker to switch to different sensors
when choosing the adequate body model. Finally, the last
task consisted of walking a circular path with two meters of
diameter (Figure 12B). This required multiple sessions and
incrementally adding a different person, until the tracked area
was congested to the point that the observed person’s tracking
data was erratic due to body occlusions.

Setup
The evaluation was conducted in a controlled laboratory en-
vironment with four by five square meters of tracked area.
We employed five Microsoft Kinect version 2 depth cameras,
evenly distributed around the room roughly forming a geo-
metric pentagon. For the marker-based tracking system, we
resorted to 12 Optitrack Flex 3 infrared cameras evenly placed
around the room at 2.30 meters above the floor, providing a
tracking volume surrounding the Kinect sensors’ setup. To
minimize the effects of network communication, both tracking
systems and logger applications were running in the same
desktop computer. Also, to obtain accurate positional data, all
smoothing filters were disabled. Still, all sensor units were
remotely streaming data within the same local wired network.
We limited Optitrack’s send rate to 100 frames per second and
Creepy Tracker was set to 20 frames per second due to both
Kinect and local network limitations.

Results
Using the data thus collected we calculated the latency and
position error of Creepy Tracker as measured against Optitrack.
These allow us to assess how best to explore the flexibility vs
accuracy tradeoffs.

Latency
To measure latency we used the logs from the raising hand
task, which are depicted in Figure 13. Logs had data recorded
at an average of 170 frames per second. The difference in

Figure 13. Latency comparison between Optitrack and Creepy Tracker.

197

a) Spinning about oneself
(avg error = 62mm).

b) Circular path with 1 person
(avg error = 80mm).

c) Circular path with 2 people
(avg error = 93mm).

d) Circular path with 3 people
(avg error = 134mm).

e) Circular path with 4 people
(avg error = 127mm).

Figure 14. Hand tracking data for each condition, and average position error.

send rates justifies the less smooth data of our tracker, as
visible in the chart. We calculated the difference between local
maxima and minima of both trackers. Creepy Tracker had a
delay averaging 76 milliseconds in comparison to Optitrack.
Although this latency alone might not be enough for real-time
performance in VR, combining Creepy Tracker’s positional
data with the orientation provided by current head-mounted
displays appears sufficient to fulfill the illusion of being there.

Accuracy
We compared the hand position from each system, in five
different conditions, illustrated in the plots of Figure 14. Al-
though the plots are 2D we stored full 3D data. We averaged
the Euclidean distance between both trackers’ data in each
frame. As evidenced in the spinning task, Creepy Tracker is
capable of accurate results, where switching between sensors
is not noticeable. While the average error was of 62mm, we
estimate that it is in part due to latency. However, in more
demanding scenarios, inaccuracies may arise. In all circular
path tasks, spikes occasionally occurred. These correspond to
sensor switching, where the new sensor perceives the tracked
person on his back. While we try to deal with this by mirroring
skeleton’s information when suited, our approach is not yet
perfect, resulting in right and left side swapping, including
hands. This persists until a disambiguating pose is detected
with certainty. These spikes are more recurring when tracked
people’s density increases, because sensors with non-optimal
point-of-views are used to circumvent occlusions. When test-
ing with more than four people in the same conditions, we
noticed that Creepy Tracker sporadically lost the main sub-
ject for a brief moment. This originated a new identifier and
invalidated the trial session.

Discussion and Design Considerations
The obtained measurements are sufficient to delineate guide-
lines and design considerations for applications using the
Creepy Tracker. Indeed, results of the latency task suggest that
our tracker is adequate for context-aware scenarios and for
more traditional input modalities, such as pointing techniques.
Although, for virtual reality applications, latency is definitely
just above the minimum threshold for virtual reality appli-
cations. Furthermore, results also show that for context and
proximity-aware interactions the accuracy is satisfactory, de-
spite the Kinect’s relatively low resolution and noise. Except
when using exclusively tracker data for selection tasks, targets

should have radius of at least 15cm. Finally, as demonstrated
by the results, increasing the density of people results in a
increasingly more inaccurate tracking and sensor switching.

LIMITATIONS
Creepy Tracker offers markerless full-body tracking of human
and static surfaces in room-scale applications. However, cer-
tain limitations need to be taken into account when developing
context-aware experiences. Currently, our toolkit models dis-
plays as planar rectangular static surfaces, but does not yet
support handheld devices. Also, a person’s orientation is not
always consistent in crowded settings. This is because the
skeleton provided by the toolkit will depend on the confidence
values reported by each depth camera. As a user moves, dif-
ferent cameras become selected, creating unnatural transitions
between frames. This also occurs when multiple people are
inside the tracking space, which also leads to inconsistencies
when occlusions between users are first detected.

CONCLUSIONS AND FUTURE WORK
We developed the Creepy Tracker to facilitate researchers
designing new interaction techniques for context-aware envi-
ronments. Our toolkit offers real-time marker-less tracking of
people, while providing the means to defining the exact po-
sition and orientation of interactive surfaces. A performance
evaluation against a highly accurate marker-based system
shows that our tracker is adequate to building and evaluat-
ing context-aware interactions. Yet, interaction designers need
to accommodate tracking errors when considering scenarios
that require high accuracy.

In the future we plan to employ multiple sensors to provide
handheld device recognition for personal interaction and user
identification, similarly to [43]. Moreover, we are also explor-
ing different approaches to merging body tracking models to
maximize both tracking consistency and accuracy.

ACKNOWLEDGMENTS
This work was partially supported by: Fundação
para a Ciência e a Tecnologia (FCT), through grants
UID/CEC/50021/2013, IT-MEDEX PTDC/EEISII/6038/2014,
and SFRH/BD/91372/2012; CAPES-Brasil Foundation,
Ministry of Education of Brazil through the scholarship grant
Ref. 9040/13-7; and the European Research Council under
the project Ref. 336200.

198

REFERENCES
1. Aggarwal, J. K., and Ryoo, M. S. Human activity

analysis: A review. ACM Computing Surveys (CSUR) 43,
3 (2011), 16.

2. Annett, M., Grossman, T., Wigdor, D., and Fitzmaurice,
G. Medusa: a proximity-aware multi-touch tabletop. In
Proceedings of the 24th annual ACM symposium on User
interface software and technology, ACM (2011),
337–346.

3. Antifakos, S., and Schiele, B. Beyond position awareness.
Personal and Ubiquitous Computing 6, 5-6 (2002),
313–317.

4. Ark, W. S., and Selker, T. A look at human interaction
with pervasive computers. IBM systems journal 38, 4
(1999), 504–507.

5. Augsten, T., Kaefer, K., Meusel, R., Fetzer, C., Kanitz,
D., Stoff, T., Becker, T., Holz, C., and Baudisch, P.
Multitoe: High-precision interaction with back-projected
floors based on high-resolution multi-touch input. In
Proceedings of the 23Nd Annual ACM Symposium on
User Interface Software and Technology, UIST ’10, ACM
(New York, NY, USA, 2010), 209–218.

6. Azimi, M. Skeletal joint smoothing white paper. Tech.
rep., 2012. http://msdn.microsoft.com/en-us/
library/jj131429.aspx.

7. Ballendat, T., Marquardt, N., and Greenberg, S. Proxemic
interaction: Designing for a proximity and
orientation-aware environment. In ACM International
Conference on Interactive Tabletops and Surfaces, ITS
’10, ACM (New York, NY, USA, 2010), 121–130.

8. Beck, S., Kunert, A., Kulik, A., and Froehlich, B.
Immersive group-to-group telepresence. IEEE
Transactions on Visualization and Computer Graphics 19,
4 (2013), 616–625.

9. Bolt, R. A. Put-that-there: Voice and gesture at the
graphics interface. In Proceedings of the 7th Annual
Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’80, ACM (New York, NY,
USA, 1980), 262–270.

10. Dey, A. K., Abowd, G. D., and Salber, D. A conceptual
framework and a toolkit for supporting the rapid
prototyping of context-aware applications.
Human-computer interaction 16, 2 (2001), 97–166.

11. Fails, J. A., and Olsen, J. D. Light widgets: interacting in
every-day spaces. In Proceedings of the 7th international
conference on Intelligent user interfaces, ACM (2002),
63–69.

12. Grønbæk, K., Iversen, O. S., Kortbek, K. J., Nielsen,
K. R., and Aagaard, L. Igamefloor: A platform for
co-located collaborative games. In Proceedings of the
International Conference on Advances in Computer
Entertainment Technology, ACE ’07, ACM (New York,
NY, USA, 2007), 64–71.

13. Gugenheimer, J., Stemasov, E., Frommel, J., and Rukzio,
E. Sharevr: Enabling co-located experiences for virtual
reality between hmd and non-hmd users. In Proceedings
of the 2017 CHI Conference on Human Factors in
Computing Systems, CHI ’17, ACM (New York, NY,
USA, 2017), 4021–4033.

14. Hall, E. T. The hidden dimension. Doubleday & Co, 1966.

15. Harris, A., Rick, J., Bonnett, V., Yuill, N., Fleck, R.,
Marshall, P., and Rogers, Y. Around the table: Are
multiple-touch surfaces better than single-touch for
children’s collaborative interactions? In Proceedings of
the 9th international conference on Computer supported
collaborative learning-Volume 1, International Society of
the Learning Sciences (2009), 335–344.

16. Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka,
M., and Schiele, B. Deepercut: A deeper, stronger, and
faster multi-person pose estimation model. arXiv preprint
arXiv:1605.03170 (2016).

17. Jokela, T., Ojala, J., and Olsson, T. A diary study on
combining multiple information devices in everyday
activities and tasks. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing
Systems, CHI ’15, ACM (New York, NY, USA, 2015),
3903–3912.

18. Jones, B., Sodhi, R., Murdock, M., Mehra, R., Benko, H.,
Wilson, A., Ofek, E., MacIntyre, B., Raghuvanshi, N.,
and Shapira, L. Roomalive: Magical experiences enabled
by scalable, adaptive projector-camera units. In
Proceedings of the 27th Annual ACM Symposium on User
Interface Software and Technology, UIST ’14, ACM
(New York, NY, USA, 2014), 637–644.

19. Marquardt, N., Ballendat, T., Boring, S., Greenberg, S.,
and Hinckley, K. Gradual engagement: Facilitating
information exchange between digital devices as a
function of proximity. In Proceedings of the 2012 ACM
International Conference on Interactive Tabletops and
Surfaces, ITS ’12, ACM (New York, NY, USA, 2012),
31–40.

20. Marquardt, N., Diaz-Marino, R., Boring, S., and
Greenberg, S. The proximity toolkit: Prototyping
proxemic interactions in ubiquitous computing ecologies.
In Proceedings of the 24th Annual ACM Symposium on
User Interface Software and Technology, UIST ’11, ACM
(New York, NY, USA, 2011), 315–326.

21. Marquardt, N., Hinckley, K., and Greenberg, S.
Cross-device interaction via micro-mobility and
f-formations. In Proceedings of the 25th Annual ACM
Symposium on User Interface Software and Technology,
UIST ’12, ACM (New York, NY, USA, 2012), 13–22.

22. Marquardt, N., Jota, R., Greenberg, S., and Jorge, J. The
continuous interaction space: interaction techniques
unifying touch and gesture on and above a digital surface.
Human-Computer Interaction–INTERACT 2011 (2011),
461–476.

199

http://msdn.microsoft.com/en-us/library/jj131429.aspx
http://msdn.microsoft.com/en-us/library/jj131429.aspx

23. Marshall, P., Hornecker, E., Morris, R., Dalton, N. S., and
Rogers, Y. When the fingers do the talking: A study of
group participation with varying constraints to a tabletop
interface. In Horizontal Interactive Human Computer
Systems, 2008. TABLETOP 2008. 3rd IEEE International
Workshop on, IEEE (2008), 33–40.

24. Matthews, T., Dey, A. K., Mankoff, J., Carter, S., and
Rattenbury, T. A toolkit for managing user attention in
peripheral displays. In Proceedings of the 17th annual
ACM symposium on User interface software and
technology, ACM (2004), 247–256.

25. Mendes, D., Relvas, F., Ferreira, A., and Jorge, J. The
benefits of dof separation in mid-air 3d object
manipulation. In Proceedings of the 22Nd ACM
Conference on Virtual Reality Software and Technology,
VRST ’16, ACM (New York, NY, USA, 2016), 261–268.

26. Orts-Escolano, S., Rhemann, C., Fanello, S., Chang, W.,
Kowdle, A., Degtyarev, Y., Kim, D., Davidson, P. L.,
Khamis, S., Dou, M., et al. Holoportation: Virtual 3d
teleportation in real-time. In Proceedings of the 29th
Annual Symposium on User Interface Software and
Technology, ACM (2016), 741–754.

27. Pejsa, T., Kantor, J., Benko, H., Ofek, E., and Wilson, A.
Room2room: Enabling life-size telepresence in a
projected augmented reality environment. In Proceedings
of the 19th ACM Conference on Computer-Supported
Cooperative Work & Social Computing, ACM (2016),
1716–1725.

28. Pierce, J. S., Forsberg, A. S., Conway, M. J., Hong, S.,
Zeleznik, R. C., and Mine, M. R. Image plane interaction
techniques in 3d immersive environments. In Proceedings
of the 1997 symposium on Interactive 3D graphics, ACM
(1997), 39–ff.

29. Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., and
Fuchs, H. The office of the future: A unified approach to
image-based modeling and spatially immersive displays.
In Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques,
SIGGRAPH ’98, ACM (New York, NY, USA, 1998),
179–188.

30. Rekimoto, J., and Nagao, K. The world through the
computer: Computer augmented interaction with real
world environments. In Proceedings of the 8th annual
ACM symposium on User interface and software
technology, ACM (1995), 29–36.

31. Schilit, B., Adams, N., and Want, R. Context-aware
computing applications. In Mobile Computing Systems
and Applications, 1994. WMCSA 1994. First Workshop
on, IEEE (1994), 85–90.

32. Seyed, T., Azazi, A., Chan, E., Wang, Y., and Maurer, F.
Sod-toolkit: A toolkit for interactively prototyping and
developing multi-sensor, multi-device environments. In
Proceedings of the 2015 International Conference on
Interactive Tabletops & Surfaces, ITS ’15, ACM (New
York, NY, USA, 2015), 171–180.

33. Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A.,
Finocchio, M., Blake, A., Cook, M., and Moore, R.
Real-time human pose recognition in parts from single
depth images. Communications of the ACM 56, 1 (2013),
116–124.

34. Slater, M., and Usoh, M. Body centred interaction in
immersive virtual environments. Artificial life and virtual
reality 1, 1994 (1994), 125–148.

35. Sousa, M., Mendes, D., Ferreira, A., Pereira, J. M., and
Jorge, J. Eery space: facilitating virtual meetings through
remote proxemics. In Human-Computer Interaction,
Springer, Cham (2015), 622–629.

36. Tang, R., Alizadeh, H., Tang, A., Bateman, S., and Jorge,
J. A. Physio@home: Design explorations to support
movement guidance. In CHI ’14 Extended Abstracts on
Human Factors in Computing Systems, CHI EA ’14,
ACM (New York, NY, USA, 2014), 1651–1656.

37. Vermeulen, J., Luyten, K., Coninx, K., Marquardt, N.,
and Bird, J. Proxemic flow: Dynamic peripheral floor
visualizations for revealing and mediating large surface
interactions. In Human-Computer Interaction, Springer
(2015), 264–281.

38. Vogel, D., and Balakrishnan, R. Interactive public
ambient displays: Transitioning from implicit to explicit,
public to personal, interaction with multiple users. In
Proceedings of the 17th Annual ACM Symposium on User
Interface Software and Technology, UIST ’04, ACM
(New York, NY, USA, 2004), 137–146.

39. Weiser, M. The computer for the 21st century. Scientific
american 265, 3 (1991), 94–104.

40. Weiser, M. The computer for the 21st century. IEEE
pervasive computing 1, 1 (2002), 19–25.

41. Wilson, A. D. Depth-sensing video cameras for 3d
tangible tabletop interaction. In Horizontal Interactive
Human-Computer Systems, 2007. TABLETOP’07. Second
Annual IEEE International Workshop on, IEEE (2007),
201–204.

42. Wilson, A. D., and Benko, H. Combining multiple depth
cameras and projectors for interactions on, above and
between surfaces. In Proceedings of the 23nd annual
ACM symposium on User interface software and
technology, ACM (2010), 273–282.

43. Wilson, A. D., and Benko, H. Crossmotion: Fusing
device and image motion for user identification, tracking
and device association. In Proceedings of the 16th
International Conference on Multimodal Interaction,
ICMI ’14, ACM (New York, NY, USA, 2014), 216–223.

44. Wu, C.-J., Houben, S., and Marquardt, N. Eaglesense:
Tracking people and devices in interactive spaces using
real-time top-view depth-sensing. In Proceedings of the
2017 CHI Conference on Human Factors in Computing
Systems, CHI ’17, ACM (New York, NY, USA, 2017),
3929–3942.

200

	Introduction
	Related Work
	Ubiquitous and Context-aware Environments
	Marker-less Human Tracking

	Creepy Tracker
	Sensor Unit
	Tracker Hub
	Calibration Method
	Adding Surfaces
	Tracking People
	Point-cloud Representations
	Using Tracker Data
	Tabletops
	Wall-sized Displays
	Floor Projected Surface
	Telepresence Portals
	Virtual Reality Interactions

	Evaluation
	Design
	Setup
	Results
	Latency
	Accuracy

	Discussion and Design Considerations

	Limitations
	Conclusions and Future Work
	Acknowledgments
	REFERENCES

